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ABSTRACT 

I present in this paper aims to study an SIR epidemic model with generalized saturated incidence rate function. 

We analyze stability of the disease-free and the endemic equilibrium is with a nonlinear incidence rate. 
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1. INTRODUCTION 

Contacts between susceptibles and infectives may lead to infection, and infectives may recover at different times 

after they become infective. This dynamics is stochastic in nature, but, for a large population, the statistical fluctuations 

may be ignored and the change in the size of each compartment becomes deterministic.  

Epidemic dynamics is an important method of studying the spread rules of infectious diseases qualitatively and 

also quantitatively. It is largely based on specific properties of population growth. Analysis trough Mathematical Modeling 

requires transmission rules i.e. rate of incidence.  

Incidence in an epidemiological model is the rate at which susceptible become infectious. The behavior of the SIR 

models are greatly affected by the way in which transmission between infected and susceptible individual are modeled. 

Simple mass action was introduced in classical Kermack –Mcendrick model βSI, where   is transmission rate,                  

S is susceptible population and I is infectious population [7]. Another popularly used incidence rate is standard incidence 

SI N , where N is the total population and β is daily contact rate [4]. An SIRS model with Saturation incidence was 

proposed by Lorca Mena and Hethcote [10]. Liu, Hethcote and Lewin [9] have proposed non linear incidence rate. 

In the present chapter we have considered an SIR epidemic model with incidence rate function. If we consider 

nonlinear incidence rate 
 

kI

I
 in the model coincide with that of Pathak et.al. [12]. 

2. PRELIMINARIES 

I. Definitions 

 Equilibria: Given an equation ( )
dx

f x
dt

, a point 
*x is an equilibrium point if 

*( ) 0f x . 

 Diseases free Equilibrium: The equilibrium points of given system at the origin (0,0) are called disease free 

equilibrium 
0E . 

 Endemic Equilibrium: The positive solution of the given system is called endemic equilibrium  * * * *E S ,I ,R . 
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 Basic Reproduction Number ( 0
R ): The reproduction number 

0R is products of infection rates and durations of 

infection. 

i.e. Basic Reproduction Number (
0R )= (Rate of secondary infection)   (Duration of infection)  

 if 
0 1R  the infection cannot grow. 

 if 
0 1R  the disease can invade the population. 

II. Some Basic SIR Models 

 Basic Sketcher of SIR Epidemic Model 

 

Figure 1: Basic Sketcher of SIR Model 

 First Epidemic SIR Model (Kermack-Mckendrick1927) 

Let the infected person be removed from population at a rate proportional to the current number of infective 

person. Assuming the former infectives enter a new class which is not susceptible to the disease. Then the equations of the 

model are  

 
dS

SI
dt  

  
dI

SI I
dt

 


dR

I
dt

 

Where, Total population N=S(t)+I(t) R(t) is constant. 

 The SIR Model with Birth and Deaths 

Using the case of measles, for example, there is an arrival of new susceptible individuals into the population.     

For this type of situation births and deaths must be included in the model. The following differential equations represent 

this model, assuming a death rate d and birth rate equal to the death rate: 

    
dS

SI d N S
dt

 

   
dI

SI I dI
dt

 

 
dR

I dI
dt  
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3. THE BASIC MATHEMATICAL MODEL 

In the present chapter we have considered an SIR epidemiological model with asymptotically homogeneous 

incidence rate function. Then our model under the framework of the following form: 

 

- -

- ( )

- ( )

dS
b dS R

dt

dI
d I

dt

dR
I d R

dt

 

 

 


  




  



  
               

 

(1) 

where S(t), I(t) and R(t) denote the number of susceptible, infective and recovered at time t, respectively. b is the 

recruitment rate of population, d is the natural death rate of population,   is the natural recovery rate of infective, 
 
is the 

rate at which recovered individuals loss immunity and return to susceptible, 
 
is the transmission rate. 

The transmission rate 
 




kI

I
 displays a saturation effect accounting for the fact that the number of contacts 

an individual reaches some maximal value due to spatial or social distribution of the population. Where, k is the 

proportionality constant,   is the positive constant ≥ 1,   is a positive parameter and kSI is the infection force of the 

disease. 

4. MAIN RESULTS 

In this section we study an SIR epidemic model to obtain properties of the equilibrium points and analyze 

sufficient conditions under which the equilibrium points are unique or global. 

We rewrite the system (1), 

R

( ) I

I ( )R

 

 

 

   


   


   







S b dS

I d

R d

                (2) 

Because of the biological meaning of the components (S(t),R(t),I(t)), we focus on the model in the first octant       

of R3
.  

We first consider the existence of equilibria of system (2). It is easy, by computations, to conclude that the      

system (2) has two equilibrium states: the disease-free equilibrium state ( , , )
b

E
d

0 0 0  which exists for all parameter 

values and endemic equilibra 
* * *( , , )S I R .To find the endemic equilibra 

* * *( , , )S I R  of system (2) set     S I R 0 .   

Then, we obtain 

*
*

*

( I )

I
S

k

  
  

* ( )( )[ ]

( )( ) ( )( )

d d d R
I

d d d k d d k

 

   

  


      

0 1
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*
* I

( )
R

d







. 

Which exists provided that the reproduction number 
( )

bk
R

d d 
 


0           (3) 

5. MATHEMATICAL ANALYSIS 

Lemma 1: The plane S + I + R = b/d is a manifold of system (2) which is attracting in the first octant. 

Proof: Summing up the three equations in (2) and denoting N(t) = S(t) + I(t) + R(t), we have 

dN
b dN

dt
  .                (4) 

It is clear that N(t) = b/d is a solution of system (4) and for any ( ) ,N t 0  the general solution of system (4) is 

obtain by solving system (4). 

System (4) is the linear differential equation of first order so the general solution of system (4) is 

( )[ ( ( )) ]d t tN b b dN t e
d

   
1

. 

Thus lim ( )
t

b
N t

d
   

This implies the conclusion. 

It is clear that the limit set of system (2) is on the plane S + I + R = b/d. Thus, we focus on the reduced system 

( )

( ) ( , )

( ) ( , )

b
kdI I R

dI d d I P I R
dt I

dR
I d R Q I R

dt


 

 


  

     

   


            (5) 

Theorem 1: System (5) does not have nontrivial periodic orbits if ( ) .d    2 0  

Proof: Consider system (5) for I > 0 and R > 0. Take a Dulac function Wiggins [14]. 

 ,D I R   1
 

Notice that 

( ) ( ) ( )
[ ( )]

DP DQ d
d

R R kI k

 
  

  
      

 

1
1 2  

( ) ( )DP DQ

R R

 
 

 
0 , If ( ) .d    2 0  

Hence, the conclusion follows. 
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In order to study the properties of the disease-free equilibrium 
0E  and the endemic equilibrium 

*E , we      

rescale (5) by 

k
x I

d 



,   

k
y R

d 



,    ( )d t   .

( )
dx px

A x y mx
d qx

dy
sx y

d






    


  


1
               (6) 

where 

,p   1
 

( )
,

( )

d
q

k d b

 

 





 

( )

bk
A

d d 



, 

( )

( )

d
m

d









 and 

( )
s

d







. 

The trivial equilibrium (0, 0) of system (6) is the disease-free equilibrium of model (2) and the unique positive 

equilibrium  * *,x y  of system (6) is the endemic equilibrium 
*E  of model (2) if and only if A − m > 0and  

q > 0, where 

*

( )

Ap m
x

p s mq




 1
 * *y sx . 

We first determine the stability and topological type of (0, 0). The Jacobian matrix of system (6) at (0, 0) is 

Ap m
M

s

 
  

 
0

0

1
 

If Ap − m = 0, then there exists a small neighborhood 0N  of (0,0) such that the dynamics of system (6) are 

equivalent to that of 

(( , ))
dx

x o x y
d

  2 2
 

dy
sx y

d
   

Theorem 2: If m − Ap > 0 the disease-free equilibrium (0, 0) of system (6) is stable hyperbolic node, m− Ap = 0 

then saddle-node and m − Ap < 0 then hyperbolic saddle node. 

When m – Ap < 0, we discuss the stability and topological type of the endemic equilibrium  * *,x y .  

The Jacobian matrix of the system (6) at  * *,x y  is 

* * * *

* *

[ ( )] [ ( )]

( ) ( )

px qsx Aq px qx

M qx qx

s

    
 

   
  

2 2
1

1 1

1 1

1
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We have that  

*

*

[ ( )]
det( )

( )

px Aq s
M

qx

 



1 2

1

1
 

Since q > 0, it follows that det (M1) > 0 and  * *,x y  is a node or a focus or a center. Furthermore, we have the 

following result on the stability of  * *,x y . 

Theorem 3: Suppose m − A < 0, then there is a unique endemic equilibrium  * *,x y  of model (6) which is a 

stable node. 

Proof: 

* * *

*

( ( )) ( )
tr( )

( )

px qsx Aq qx
M

qx

   




2

1 2

1 1

1
 

The sign of tr( )M1  is determined by 

 
* *( ( ))S px qsx Aq  1 1   

Substituting 
*

( )

Ap m
x

s mq




 1
 into S1  and using a straightforward calculation, we have

 

( )
[ ( ) (( )( )]

[ ]

p Ap m
S Aq p mq s mq p

p s mq


     

 
1 2

1
1

 

Since q > 0, [p(1 + s) + mq] > 0  

and [−Aq(p+mq)−((mq+p)(s+1))] < 0, hence, S1 < 0. However, when m − Ap < 0, we have tr( )M1 < 0.            

This completes the proof. 

6. CONCLUSIONS 

Modeling results are helpful to predict the developing tendency of disease. The model we have discussed provides 

learning about the transmission rate effects. In this paper, we consider an SIR model with generalized incidence rate  We 

have derived a basic reproduction number R0with the special kind of transmission rule and showed that the global stability 

of the endemic equilibrium point 
* * * *( , , )E S I R depends on the basic reproduction number R0  Our result shows that 

when R0<1 the disease free equilibrium 
0E = (b/d, 0, 0) is globally attractive in the first octant. When R0 >1 the endemic 

equilibrium
*E  exists and is globally stable in the interior. Results and parametric conditions help to develop social 

consciousness about the disease among susceptible. 
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